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Abstract 

When we know the subjective probabilities (degrees of belief) pt and pi of two 
statements S\ and S2, and we have no information about the relationship between these 
statements, then the probability of S\ kS2 can take any value from the interval 
[maxfpi + pi — l,Q),min(pi,p2)]. If we must select a single number from this interval, 
the natural idea is to take its midpoint. The corresponding "and" operation 
P\hpj'= (l/2)(max(/;i + pi — 1,0) + min(j>\,p2)) is not associative. However, since the 
largest possible non-associativity degree \(a&tb)&cc — a&c(b&c)\ is equal to 1/9, this 
non-associativity is negligible if the realistic "granular" degree of belief have granules of 
width > 1/9. This may explain why humans are most comfortable with ^9 items to 
choose from (the famous "7 plus or minus 2" law). We also show that the use of interval 
computations can simplify the (rather complicated) proofs. © 2002 Elsevier Science Inc. 
All rights reserved. 
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1. In expert systems, we need estimates for the degree of certainty of S\ &cSj and 
5, v S2 

In many areas (medicine, geophysics, military decision-making, etc.) top 
quality experts make good decisions but they cannot handle all situations. It is 
therefore desirable to incorporate their knowledge into a decision-making 
computer system. 

Experts describe their knowledge by statements Si,... ,S„ (e.g., by if-then 
rules). Experts are often not 100% sure about these statements S,-; this uncer- 
tainty is described by the subjective probabilities p, (degrees of belief, etc.) which 
experts assign to their statements. The conclusion C of an expert system nor- 
mally depends on several statements St. For example, if we can deduce C either 
from S2 and S3, or from S4, then the validity of C is equivalent to the validity of 
a Boolean combination (S2frSj) V S4. So, to estimate the reliability p(C) of the 
conclusion, we must estimate the probability of Boolean combinations. In this 
paper, we consider the simplest possible Boolean combinations S1&S2 and 
S, VS2. 

In general, the probability p(S\Kr.S2) of a Boolean combination can take 
different values depending on whether S, and S2 are independent or correlated. 
So, to get the precise estimates of probabilities of all possible conclusions, we 
must not only know the probabilities />(S,-) of individual statements but also the 
probabilities of all possible Boolean combinations. To get all such probabili- 
ties, it is sufficient to describe 2" probabilities of the combinations 
£"i'fe •• •&£*", where >:, e {+,—}, E* means E, and E means ->E. The only 
condition on these probabilities is that their sum should add up to 1, so we 
need to describe 2" — 1 different values. A typical knowledge base may contain 
hundreds of statements; in this case, the value 2" - 1 is astronomically large. 
We cannot ask experts about all 2" such combinations, so in many cases, we 
must estimate p(S\ &Si) or p(S\ V S>) based onlv on the values p\ — p(S\) and 
Pi=p(S2). 

2. Interval estimates are possible, but sometimes, numerical estimates are needed 

It is known that for given px — p(S{) and p2 = p(S2): 

• possible values of p(S\ &S2)  form  an  interval  p = \p~,p+], where p   — 
max(/>i + p2 - 1,0) and />' = min(/5],/;:); and 

• possible values of p(S\ V S2)  form  an  interval  p = \p~,p+], where p~ — 
max(/3|,/72) and ph = min(p\ + p2.1) 

(see, e.g., a survey [23] and references therein). 
So. in principle, we can use such interval estimates and get an interval p(C) 

of possible values of p(C). Sometimes, this idea leads to meaningful estimates, 



R. Trejo ci al. I Internal .1. Approx. Reason. 29 (2002) 235-266 237 

but often, it leads to a useless p(C) = [0, 1] [23,24]. In such situations, it is 
reasonable, instead of using the entire interval p, to select a point within this 
interval  as  a  reasonable estimate  for p(S\&cS2)  (or,  correspondingly,  for 
p(slys2)). 

3. Natural idea: selecting a midpoint as the desired estimate 

Since the only information we have, say, about the unknown probability 
p(S\ &cS2) is that it belongs to the interval \p~,p+], it is natural to select a 
midpoint of this interval as the desired estimate. In other words, if we know the 
probabilities p\ and p2 of the statements S\ and S2, then, as estimates for 
p(S] &iS'2) and p(S\ V S2), we can take the values j>[ &,p2 and p\ Vp2, where 

Pl&P2= 5 max(Pl +P2 ~  1,0) + 2 miniPhPi), (1) 

P\ V i>2 = r rnaxO,,p2) + 2 min(/;, +JE>2, 1). (2) 

This midpoint selection is not only natural from a common sense viewpoint; it 
also has a deeper justification. Namely, in accordance of our above discussion, 
for n = 2 statements S\ and S2, to describe the probabilities of all possible 
Boolean combinations, we need to describe 22 = 4 probabilities xi = p(S\ &S2), 
.v2 = p(S\ &L->S2), x$ = p(->S\lkS2), and X4 = p{-iS\&c->S2); these probabilities 
should add up to 1: x\ + x2 + xj + .v4 = 1. Thus, each probability distribution 
can be represented as a point (A'I, ... ,x4) in a 3-D simplex Sf — 
{(.vi ,.v2,.vi,.v4) Ijc(- > 0&X| + • • • +.*4 = 1}. We know the values of/»i = /-"(Si) = 
x\ +x2 and /;? = p{S2) = x\ + .\y, and we are interested in the values of 
p(S)!kS2) = x\ and p{S\ V S2) =x\ + x2+xy. It is natural to assume that a 
priori, all probability distributions (i.e., all points in a simplex //) are "equally 
possible'', i.e., that there is a uniform distribution ("second-order probability") 
on this set of probability distributions. Then, as a natural estimate for the 
probability p{S\ikS2) of S\hS2, we can take the conditional mathematical 
expectation of this probability under the condition that the values p{S\) = p\ 
and p(S2) - p2: 

E(p(S\ kS2) \p(Si) = px kp{S2) = p2) = P{x\ \x\ + x2 = p{ &.v, + x3 = p2). 

(This idea was proposed and described in [1,7-10J; see also [2].) 
From the geometric viewpoint, the two conditions x\ + x2 = p\ and 

xi + Xi = p2 select a straight line segment within the simplex .'/', a seg- 
ment which can be parameterized by *i e \p~,p+] = \max{p\ +p2 — 1,0), 
min(/7i,/?2)]; then, x2 = p{ - xu x3 =p2 -xu and .v4 = 1 - (x\ + x2 + .t3). Since 
we start with a uniform distribution on £?, the conditional probability distri- 
bution on this segment is uniform, i.e., x\ is uniformly distributed on the 
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interval \p~ ,p+). Thus, the conditional mathematical expectation of x\ with 
respect to this distribution is equal to (p~ +/>"')/2, i.e., to the midpoint of this 
interval. Similarly, for an "or" operation, we can conclude that 

E(P(SlVS2)\p(Sl)=plkp(S2)=p2 

1 

2 
= - max(p,,p2) + - min(/), + p2,1). 

4. Problem: midpoint operations are not associative 

Any "and" operation p\ kp2 enables us to produce an estimate for P(S\ kS2) 
provided that we know estimates p\ for p(S\) and p2 for p(S2). If we are in- 
terested in estimating the degree of belief in a conjunction of three statements 
S\ kS2kS], then we can use the same operation twice: 

• first, we apply the "and" operation to p\ and p2 and get an estimate p\ kp2 

for the probability of S\ kS2; 
• then, we apply the "and" operation to this estimate p\ kp2 and p$, and get an 

estimate (pt kp2)kpy for the probability of (S\ kS2)kS]. 

Alternatively, we can start by combining S2 and S3, and get an estimate 
P\k(p2kpi) for the same probability p(S\&cS2&iS$). Intuitively, we would 
expect these two estimates to coincide: {p\ kp2)kp-\ = p\ k(p2kpi), i-e-> in 
algebraic terms, we expect the operation k to be associative. Unfortunately, 
midpoint operations are not associative [2]: e.g., (0.4fe0.6)&0.8 = 0.2&0.8 
= 0.1, while 0.4&(0.6&0.8) = 0.4&0.5 = 0.2^0.1. 

By itself, a small non-associativity may not be so bad: 

• associativity comes from the requirement that our reasoning be rational, 
while 

• it is well known that our actual handling of uncertainty is not exactly follow- 
ing rationality requirements; see, e.g., [30]. 

So, it is desirable to find out how non-associative can these operations be. 

5. How non-associative are natural (midpoint) operations? Main results and their 
psychological interpretation 

We know that the midpoint operations are non-associative, i.e.. that 
sometimes, (akb)kc ^ ak(hkc). We want to know how big can the differ- 
ence (akb)kc — ak(hkc) can be. 

Theorem 1. max„,/,r \(akb)kc — ak(bkc)\ = 1/9. 
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Theorem 2. max,,.,,, \(a v b) V c - a v (/; v c)\ = 1/9. 

(For readers' convenience, all the proofs are placed in the last section.) 
Human experts do not use all the numbers from the interval [0, 1] to describe 

their possible degrees of belief; they use a few words like "very probable", 
"mildly probable", etc; sec. e.g.. [5]. Each of the words is a "granule" covering 
the entire sub-interval of values. Since the largest possible non-associativity 
degree \{ak,b)k.c - ah{bkc)\ is equal to 1/9, this non-associativity is negli- 
gible if the corresponding realistic "granular" degree of belief have granules of 
width > 1 /9. One can fit no more than nine granules of such width in the 
interval [0, 1]. This may explain why humans are most comfortable with <9 
items to choose from the famous "7 plus or minus 2" law; see, e.g., [20,21]. 

This general psychological law has also been confirmed in our specific area 
of formalizing expert knowledge: namely, in [5,6], it was shown that this law 
explains why in intelligent control, experts normally use ^9 different degrees 
(such as "small", "medium", etc.) to describe the value of each characteristic. 

6. Pessimism-optimism as an alternative to midpoint 

For each interval \p~,p+], the lower endpoinl /; is the most pessimistic 
estimate, while the upper bound p[ is the most optimistic one. Selecting as 
midpoint means selecting an average of the pessimistic and an optimistic es- 
timates. Alternatively, we can use Hurwicz pessimism-optimism criterion 
(originally proposed in [12]): namely, we choose a real number a £ [0,1], and 
select a value p = a • p~ + (1 — a) • /;'. This selection can be justified by the 
requirement that the corresponding mapping from intervals to points should 
not depend neither on the units in which we measure u (i.e., be scale-invariant), 
nor on the choice of the starting point (i.e., be shift-invariant). 

Definition. By a choice function, we mean a function s that maps every interval 
[u ,u+] into a point from that interval, and that has the following properties 
for every interval and for every c and X > 0: 

([«   + c,u' + c}) = s([u~ ,«fj) -i- c     (shift-invariance); 
(\X • u ", X • M

1
"]) = X • s([u~,u+})    (unit-invariance). 

Proposition [22J. Every choice function has the form 

s([u'.ur]) = a • u~ + (1 — a) • «+. 

Hurwicz's pessimism-optimism criterion has been successfully used in areas 
ranging from submarine detection [3,4,25-27] to petroleum engineering [29]; 
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see also [13-15,19,28]. (In [32,33], this approach is applied to second-order 
probabilities.) 

With this approach, we get the following formulas which generalize (1) and 
(2): 

P\ kp2 = a • max(pi + p: - 1,0) + (1 - a) • min(/>:,/;2), (3) 

pi V p2 = a • max(p, ,p2) + (1 - a) • m\n(p] + p2, 1). (4) 

These operations (3) and (4) have the following easy-to-prove properties: 

• they are commutative: a fob = bka and a V h — b V a; 
• they are monotonic in the sense that if a^a! and b^b', then akb^a'kb' 

and aVb^a'V />'; 
• for classical truth values a, b e {0,1}, these operations coincide with the cor- 

responding operations of classical two-valued (Boolean) logic; 
• the "and"-opcration (3) is a convex combination of two /-norms for both of 

which a * b ^ a, hence akb^a for all a and b\ similarly, a^aVb for all a 
and /). 

For these new operations, the largest possible degrees of non-associativity are 
equal to the following values: 

Theorem 3. 

a-(l -a) 
max | (a k b) k c - ak (b k c) \ 
a,b.c 2 + a • (1 - a). 

Theorem 4. 

a• (I — a) 
max   flVWVc-aV /• V c) = —,-—J~~ 
a,h.c lv ' n      2 + IX- (1 -a). 

7. These operations are semi-associative 

It turns out that in proving Theorems 14, it is useful to take into consid- 
eration that although the new operations k and V are not associative, i.e., the 
values (ak.b)kc and ak(bkc) are not always equal, these operations are 
semi-associative in the sense that instead of equality, we have one-sided in- 
equality. To be more precise, the following result is true: 

Definition  1. We say that a commutative operation * is semi-associative if 
a < b < c implies that a * (b * c) > b* (a*c) ^ C * (a * b). 

Theorem 5. For every a £ (0, I), both operations (3) and (4) are semi-associative. 
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8. Proofs 

8. /. General comment 

One can easily see that the operation (2) is dual to the operation (1) in the 
sense that a Vfe = 1 — (1 — a)&c(l — b). Similarly, for every t 6 (0,1), the 
operation (4) corresponding to this a is dual to the operation (3) corresponding 
to a' = 1 — a, and vice versa. Because of this duality, we can easily deduce 
Theorem 2 from Theorem 1, Theorem 4 from Theorem 3, and the "or" part of 
Theorem 5 from its "and" part. Thus, it is sufficient to prove Theorem 1, 
Theorem 3. and the "and" part of Theorem 5. 

Of these three results, Theorem 1 is a particular case of Theorem 3 which 
corresponds lo a = 0.5; thus, it is sulficient to prove Theorem 3 and the "and" 
part of Theorem 5. Since, as we have mentioned, Theorem 5 is used in Section 
8.3, wc will start by proving Theorem 5. 

To make it easier to follow these proofs, the reader is welcome to use the fact 
that the traditional fuzzy logic operation min(a,b) corresponds to a = 0 and 

1 — a= 1; to make this following even easier, we introduce a new variable 
/} = 1 - a; then, a = 1 - jl. 

8.2. Proof of Theorem 5 

8.2.1. General idea of the proof 
Let us assume that a, b, and c are three real numbers for which a^b^c. 

For these real numbers, we want to prove the inequalities between the three 
terms alk(b&cc), /j&(«fcc-), and c& (a<k.b). Each of these terms describes the 
order in which we apply an "and" operation & lo these three numbers: e.g., 
a&c(blk.c) means that we first apply this operation to /; and c, and then 
combine the result with a. To simplify notations, we will denote each of these 
three terms by the number which is the last to be combined; to be more 
precise, we will use the notations ia=a&i(b!kc), lh = bk(akc), and /,.= 
ck(akb). 

The formulas for aScb, aLc, and bike depend on the relation between, 
correspondingly, a + b, a + c, b 4- c, and the number I. Since we assumed that 
a^b<c, we have a + b^a + c^b i- e. Thus, there are exactly four possible 
locations of number 1 in relation to these three sums: 

I. the number 1 can be larger than the largest of these three sums; in this 
case, all three sums are ^ 1, i.e., 

a + b^a + c^b + c^1; 

II. the number 1 can be between a + e and /; + c; in this case, 

a + b sj a 4- c < 1 < b + c; 
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III. the number 1 can be between a + b and a + c; in this case, 

a + b < 1 <a + Osib + c; 

IV. the number 1 can be smaller than the smallest of these three sums; in this 
case, all three sums arc > 1, i.e., 

1 < a + b^a + c^h + c. 

Let us consider these four cases one by one. 

8.2.2. Case 1 
In this case, a + b^a + c^b + c^l, so a + b< 1 and b 4- c< 1. Hence, 

bkc = P • b, akc = /)' • a, and akb = /J • a. Let us find the values of all three 
terms /„, //,, and tc: 

tc: Since akb^a (by the properties of the new operation) and a ^ c (by our 
assumption), we conclude that akb^ c. Also, (akb) + c = P • a + c^.a + 
c^ 1, so 

(akb)kc = p • (abb) = p • (/>' • a) = p2 • a. 

th: Similarly (akc) ^ a ^ b, and (a&c) + b = p•a + b^a + b^\ so 

(akc)kb = p • (akc) = p • (p • a) = p2 • a. 

ta\ Finally, (bkc) +a = P-b + a^a + b^l, so 

(bkc)ka = P • min(/; • b,a) = min(/»': • b,p • a). 

Now we are ready to prove the desired inequalities: 

tc ^ //,: We have shown even that th — (akc) kb — (akb) kc = tc. 
th < t„: Since b > a, we have p2 • b > p~ • a; clearly, since p < 1, we have 
P > p2, hence j] • a ^ p2 • a. Hence, min(/)'2 • b, p • a) ^ p2 • a. 

Thus, for Case I, the inequalities are proven. 

8.2.3. Case II 
In this case, a+b^a+c^ 1, so akc = P • a and abb = p • a. On the other 

hand, since b + c > 1 and 6^c, we have bkc = P • b + (1 - p) • (b + c - 1) 
^ P • b. Let us find the values of the three terms r„, //„ and /,.: 

fe: Here, (akb) < a ^ c and («&/>) + r = /{• a + c < a + c < 1, so 

(akb)kc = p-(akb) = p2-a. 

th: Similarly, (akc) ^a ^b and (akc) + b = P-a + b^a + b^l, so 

(a&c)&/> = p-(akc) = P2 -a. 
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ta: Finally, since bkc ^ \\ • b, and & is a monotonic operation, we can con- 
clude that (bkc)ka *t (ji • b)ka. We have jib + a^a + b^\, so 

(ji • b)ka = ji • min(0 • b,a) =  min(02 • 6,P • a) 

and 

(fc&c) ka ^ (j3 • 6) &a = min(/j' • /-, ji-a). 

Now we are ready to prove the desired inequalities: 

ic^'b'- We have shown that (akc)kb = (akb)kc. 
th ^ /„: In proving Case 1, we have already shown that min(/? • b,ji • a) ^ 
ji2 • a, hence t„ > min(/i2 • /;, ji • a) ~^ ji2 • a = th and //, ^ („. 

Thus, for Case II, the inequalities are proven as well. 

8.2.4. Case UJ 
Here, a + b ^ 1, so akb —- ji• a. Since a + c ^ 1 and 6 + c ^ 1, we have 

akc = P-a+{\ -0)-(a + c- 1) 

= P-a + (\-p)-a + (\-p)-c-(l-P) 

= a + (l-/?)c-(l-j3) 

and similarly, fc&c = & + (1 — P) • c — (1 —ft). Let us find the values of the 
three terms /„, tb, and tc: 

/,.: Here, (akb)kc = (ji • a)kc. Since a^c, we have ft-a^c. Hence, 
the expression for this term depends on whether ji • a + c^l or ji • a + 
c> 1: 

(a) If 0a + c<l, then (akb)kc = (ji • a)kc = ji2 • a. 
(b)If   /?-a + c>l,   then    (akb)kc = (ji • a)kc = ji • a +(\ - ji) • c- 

ft: We have a&c < a ^ /> and (</&<,•) + /? ^ a + b ^ 1, hence 

(akc)kb = ji • (akc) = p -a + P • (1 - p)  c - j8 • (1 - jS). 

/„: Finally, since bkc^b, we have (6&c) + a^ft + a< 1. Therefore, the ex- 
pression for this third term depends on whether bkc = b + (1 - ji)- 
c- (1 - p) ^a or b + (1 - 0) • c- (1 - p) > a: 

(a) [f 6 + (1 - 0) • c - (1 - ji) «: a, then 

(6&c) ka = j] • (bkc) =P-b + p-(l-p)-c-P-(l- ji). 

(b) If 6 + (1 - P) -c - (1 - //) > a, then (bkc)ka = ji • a. 

Let us now prove the inequalities. 
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tc. ^ //,: First, we will prove that (akb)kc^ (akc)kb. We will prove this in- 
equality for both possible expressions for (akb)kc: 

(a) If   jS-a + c<l,   then   (akb)kc = ft2 -a.   On   the   other   hand, 
(akc)kb — /? • (akc) and since 

akc = P • a + (1 - jS) • (a + c - 1) ^ P • a, 

and /) > /? , we conclude that 

(akc)kb = fi • (akc) ^ fi • a > /?2 • a = (akb)kc. 

(b) If fi-a + c> 1, then 

(fl&A)&c = (/?•«) &c 

= /?-a+(l-/?)T-fl~/,') 

= /?-a-(l-/?).(l-c). 

On the other hand, 

{akc)kb = /)' • a + fi • (1 - fi) • c - fi • (I - fi) 

= fS-a-fi-(\-li)-(l-c). 

Since 0 < fi < 1, we have p • (1 - fi) • c s$ (1 - P) • c. Thus, 

p.a-(l-p)-(l~c)^p-a-p-(l-p)-(l-c), 

i.e., (a&£)&c<(fl&c)&A. 
So, this inequality is proven for both cases. 
th^t,,: Let us now prove the second inequality (akc)kb^(bkc)ka. To 
prove this inequality, we will also consider two possible expressions for 
\bkc)ka: 

(a) If bkc = b+ (1 - fi) • c- (1 - fi) < fl, then 

(£&c)&fl = 0- (fe&c) = p-b + fi- (1 -/?) •<--/?• (I -/>'). 

Since ft ^ a, we have 

(fc&c)&fl = p-b + P-(l-P)-c-P-(l-p) 

>fi-a + fi-{\ -p).c-p-{\ -fi) 

= (akc)kb. 

(b) If/i&c = /) + (l -/?)-c-(l - fi) >a, then (bkc)ka = p-a, and 

(a&c)&ft = /) • A + fi • (1 - P) • c - />' • (1 - P) 

= p-a-P-(l-P)-(l-c). 

Since c^ 1, we have 

(bkc)ka = p-a^p-a-P-{\~ fi) • (1 - c) = (akc)kb. 

So, this inequality is also proven for both possible cases. 
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8.2.5. Case IV 
In this case, all three sums a + b, a + c, and b + c are greater than 1, so 

akb = a + (1 - jS) • b - (1 - fi), akc = a + (1 - /?) c - (1 - /*), and ft&c = 
/> + (1 - /?) -c — (1 - /i). Before we start computing the values of the terms ta, 
t/,, and tc, we want to make some preliminary analysis: 

• The value of ta = (bkc)ka depends on whether (bkc) +a^ 1, i.e., whether 
/> + (1 - ji) • c - (1 - ji) + a s% 1. If we move terms which do not contain a, 
h. or c to the right-hand side, and rearrange terms which do contain a, b, 
or c, in alphabetic order, we get an equivalent inequality a + b + (l — [1) 
xc<2 - />'. 

• Similarly, the value of tb = (akc)kb depends on whether (akc) +6<1, 
i.e., whether a + (1 — /?) • c — (1 - /?) +6< 1, which is also equivalent to 
the same inequality a + 6 + (1 — />) • c<2 — ji. 

• Finally, the value of tc = (akb)kc depends on whether (akb) + c^i, i.e., 
whether a + (I - /J) • b - (1 — /?) + c ^ 1, which is equivalent to the inequal- 
ity a + (1 - fi) -b + c^2 -0.} 

So, to find the expressions for ta, t,„ and tc, we must know where 2 - ft stands in 
comparison with a + b + (l-ft)-c and a + (1 — ft) • 6 + c. Since b^c, we 
have ft • b^ ft • c, hence 

a + b + (\ -P)-c= {a + b + c)-ft-c 

^ {a -I- b + c) -ft-b 

= a+{\ -II) -b + c. 

Due to this inequality, we have exactly three possibilities: 

A. the number 2 — ft can be larger than the largest of the above two expres- 
sions; in this case, both expressions arc < 2 — ft. i.e., 

a + b + {l-ft)-c^a + (l-ft)b + c^2-ft; 

B. the number 2 - fi is in between the above two expressions; in this case, 

a + b + (1 - ft) • e<2 - ft < a + (I - ft) -b + c; 

C. the number 2 — //is smaller than the smallest of the above two expres- 
sions; in this case, both expressions arc  ^ 2 — ft, i.e., 

2-/?<a + & + (l--j8)-c<a + (l - /J) -6 + c. 

We will prove the inequalities by analyzing these three cases one by one. 

8.2.6. Case IV. Subcase A 
In this case, a + b + (I - ft) -c^a + (1 - ft) • b + c^2-ft, hence, (a&6) + 

c< 1, (a&c) + fe< 1, and (2>&c) + « sj 1. 
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tc: Since akb^ a (by the properties of the new operation), and a ^ c (by our 
assumption), we conclude that akb^c. Since (akb) +c< 1, we conclude 
that 

(akb)kc = [, • (akb) = p • a + fi • (1 - p) •/>-//• (1 - p). 

th: Since akc^a ^b, and (akc) + &< 1, wc have 

(a&c)&2> = 0 • (a&c) = p-a + {l- (1 - />') •(•-//•(!- />'). 

^„: Since (bkc) + a^ 1, we have 

(bkc)ka = /? • min(6&c,a) = /)' • min(i + (1 - />') • c - (1 - /I), a). 

Let us now prove the desired inequalities: 

tc ^ ?/,: Since ft ^ c, we have 

(akb)kc = p-a + p-(] - P) -b - /?• (1 - p) 

<P-a + p-(l-p)-c-p-(l-P) 

= (akc)kb. 

//,</„: By the properties of the operation k, we have akc^a; also, from 
a^b and monotonicily of k, we conclude that akc^bke. Since akc does 
not exceed the two numbers a and bkc, it therefore cannot exceed the small- 
est of these two numbers, i.e., akb^ min(/>. kc),a. Multiplying both sides 
of this inequality by /)', we conclude that 

P • (akc) ^p • min(bkc,a), 

hence 

(akc)kb = P • {akc) < /? • mm(bkc,a) = (bkc)ka. 

8.2.7. Case IV, Subcase B 
In this case, a + b + (1 - P) • c< 2 - /? < a + (1 - p) -b + c, hence, («&/;) + 

c > 1, (a&c) + /;^ 1, and (6&c) +ASC 1. 

ff.: Since akb^a ^c and (a&fe) + c> 1, we conclude that 

(akb)kc = (akb) + (1 - p) -c - (1 - /?) 

= a + (l-j8)-o + (l-/?)-c-2-(l -0). 

/A: Since «&c ^a^b, and (akc) + b ^ 1, wehave 

(akc)kb = P • (akc) = p-a +P • (I - P) • c - p • (\ - />'). 

/„: Since (bkc) + a ^ I, we have 

(/)&c)&« = /I • min(6&:c,a) = /i • min(Z> + (1 - /(). c - (1 - />'),«)• 
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Lei us now prove ihc desired inequalities: 

tc«% th: Indeed. 

tc-t„ = (a + (l-P)-b+(\ -P)-c 

-2-{l-P))-(fi-a + p-{l-P)-c-p-{l-fi) 

= (1 - 0) .fl+ (1 - /J) • ft + (1 - |S)2 -c - (2 - 0) • (1 - 0) 

= (l-P).(a + b+{l-P)-c-(2-P)). 

We know that /i < 1, so I - P > 0. Also, in Case IV.B, we have a + b + 
(1 - P) • c - (2 - [i) ^ 0; hence, te - t,, s$ 0, i.e., tc s$ tb. 
U, ^ 'u: This inequality is proven exactly as in Case I V.A. 

S.2.S. Case IV, Subcase C 
In this case, 2~P<a + b+{\ - P) • c < a + (1 - P)-b + c, hence, (a & ft) + 

c > 1, (a&c) + ft > 1, and (ft&c) + a > 1. 

«c: Since «&ft < a ^ c and (a&ft) + c > 1, we conclude that 

(«fcft)&f = (abb) + (\-p)-c-(l- P) 

= a + (l-p)-b + (l-P)-c~2-(l-p). 

//,: Since a&cc-^a^b and («&c) + ft > 1, we conclude that 

(«&c)&ft = (a&c) + (1 - j?) • ft - (1 - p) 

= a + (I - P) • b + (1 - p) • c -2- {I -P). 

/„: Since (ft&c) +a > 1, the expression for /„ depends on whether bkc^a, 
i.e., on whether 6 + (1 - P) • c - (1 - /?) < a: 

(a) If bhc = 6 + (1 - ft1) • c - (1 - //) < a, then 

(6&c)&a = {bice) + (1 - /?) • a - (1 - p) 

= (1 -./?)• a + 6 + (l -/O-c-2-0 -ft1)- 

(b) If bkc = ft + (1 - 0) • c - (1 - P) > a, then 

[bkc)ka = a + (1 - p) • (ft&c) - (1 - p) 

= a + (l-p)-b + (l-p)2-c-(l-P)2-(l-p). 

Let us now prove the desired inequalities: 

tc < t/,: Indeed, in this case, th — tc. 
th ^ t„: We will prove that this inequality holds in both cases (a) and (b): 
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(a) In this case, 

r.-/» = ((! -fi)c-a + b + (i -p)-c 

- 2 • (1 - p)) - (fl + (1 - p) • ft + (1 - P) • c- 2- (1 - /J)) 

= -/> • a + /)' •* = /?• (ft - a) 2* 0, 

so /„ ^ /,,. 
(b) In this case, 

t. - h = (a + (1 - p) • b + (1 - /;)2 • c - (1 - j3)2 

- (1 - /?)) - (« + (1 - p) • ft + (1 - p) • c - 2 • (1 - /»')) 

= -/? • (1 - P) • c + p. (1 - p) = p. (1 - fi) • (1 -c) > 0, 

so also /„ > //,. 

The theorem is proven. 

5.3. Proof of Theorem 3 

8.3.1. General idea of the proof 
We want to prove that the maximum (over all real numbers a, ft, and c) of 

the absolute value |(o&ft)&c - a&(ft&c)| of the difference (a&ft)&c- 
ak(bkc) between different "and"-combinations of these numbers, is equal to 

2 + a-(l-a)     2 + 0.(1-j8)" 

From Theorem 5, we know that for three arbitrary numbers, the possible 
combinations always appear in a certain order: namely, if we order the original 
numbers in the increasing order a ^b^c, then we have 

t„ = ak (bike) ^ th = ft& (akc) ^ tc = ck (tik b). 

Thus, the largest possible difference between the possible "and"-combinations 
is equal to 

ta - t, = ak(bke) - ck(akb). 

Thus, to prove Theorem 3, it is sufficient to prove that the maximum of ihe 
difference tc — tu over all possible values a^b^c is equal to M. 

The fact that the difference ta — tc can take the value M can be easily shown 
by the following example: 

def 1 .   def, _!+/'•(!  ~P) 
rt«-2 + /;.(i-/;);   b°-l~a°-2 + p-(\-py 

def.        - 2-lf 
cn = 1 - P • a0 = 

2 + p-{\-p) 
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In particular, for x = 0.5 and ft - I - x — 0.5, we have M = 1/9 and 

4 5 7 
fl» = 9;    6» = 95    c» = 9" 

Let us show that for these values, ta - /,. = A/. Indeed, here, a0 < 0.5 hence 
b\ = 1 — a() > 0.5, so c/() < />(). Also, since /i < 1, we have c0 — 1 — p • a0 > /J(> = 
1 — «o, so (/(i < &o < Co. 

Since a» +1\) = 1. and «o < ^o < <-'». we have «u + Co > 1 and b0 + c() > 1. 
Thus, ao&cbo = ft • «o and 

6o&Cd = Ao + (l-^)-co-(l-/J) = l-flo + (l-/0-(l-/J-fltt)-(l-/») 
= l-ao + (l-^-j8.(l-j8)-flo-(l-j8) 

= l-a0-p-{l-p)-a0-(l-ft 
l+P-(l-P) 1 
2 + 0.(1-0) 

1 
•a0. 

2 + 0.(1-/0 

Now we can compute the values /„ and tc and the dilTerence between them: 

tc: Here, avkc\} <«(l ^ bu. Since (a()&/»u) = ft • OQ, we have (a0&fco) + c'<> = 

0 • a0 + c0 = 1, so 

tc = (ao&cb0)&cc0 = ft • (aQkb0) = ft2 • a0. 

t„: Here, (60&c'o) — flo> so w0 ^ &o&co> and (6o&c0) + au = 2a0 < l» hence 

ttt = «()&(/;0&c'o) = 0- a0. 

Hence, 

<. - *, = 0 • ao - ft1 • ao = ft • (I - 0) • ao = 2^/?
(1
(7f)

/i) = W- 

To complete the proof, it is therefore sufficient to prove that the dilTerence 
t„ - tc cannot exceed M. We will prove this by reduction to a contradiction by 
assuming that ta - tc > M and by getting a contradiction. This contradiction 
will be different for Cases I-IV considered in Section 8.2. 

8.3.2. Case 1 
In this case, as we have shown in Section 8.2, ta = min(0 • b, 0 • a) and 

/,. = 02 • a. Thus, from the assumption that ta - tc > M, we can conclude that 
02 • p - P2   a>M and that P • a - ft1 • a > M. 

The second of these inequalities is equivalent to P • (1 - p) • a > M, i.e., to 

A/ 
a> injury 
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By definition of M, we have 

M 1 
= (to, 0-(l-0)     2 + 0.(1-0) 

so this inequality leads to 

fl>0o = 2+/(>-/o: (5) 

The first inequality ft2 • b - [I2 • a = p2 • (b -a) > M is equivalent to 

M _ 1 - p 

f ~ 0-(2 + 0-(l - P)) 

From (5) and (6), we conclude that 

ft-a>-g=»./o, *.>i     <m- (6) 

fl + 6=(fe-a)+2fl> ' f grr 0.(2 + 0.(1-0))     2 + 0.(1-0) 
20 + (1-0) 1+/)' 

0.(2 + 0.(1-0)     0.(2 + 0.(1-0))- 

Since in Case I, A + /> < 1, we conclude thai 

0.(2 + 0.(1-0))^   ' 
i.e., that 

i + 0<0.(2 + 0-(i-0)) = 20 + 02-03. 
If we move 0 to the right-hand side and 03 to the left-hand side, we get a 
simpler equivalent inequality 

1 + 03 <0 + 02. 
This inequality can be further simplified if wc divide its both sides by 1 + 0 > 0, 
resulting in the following: 

1 - 0 + 02 < p. 

If we move 0 from the right-hand side to the left, we gel  1 -20 + 02 = 
(1 - P)~ < 0, which is impossible. 

The contradiction shows that in Case I, we cannot have ta — tc > M. 

8.3.3. Case II 
In this case, as we have shown, tc = 0" • a. To get the desired contradiction, 

we must deduce the expression for ta = (bkc)ka. Here, bhc = b + (1 - 0)- 
c — (1 — 0). From b&cc ^ A, we can conclude that (b&r.c) + «</' + « sj 1, so 

r0 = 0 • mm(bkc,a) = 0 • min(/H- (1 -0) -c- (1 - 0),a). 
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Thus, from the assumption that /„ - tc > M, we can conclude that 

p • (b + (1 - p) • c - (1 - p)) - If -a>M (7) 

and 
P • a - P • a1 > M. (8) 

From (8), similarly to Case I, we can conclude that a > a0. Since in Case II, we 
have a + c<l, we conclude that c^l— a; due to a > aa, we have 
1 — a < 1 - ao and therefore, 

1 + 0.(1-/0 
c < 1 - «o = bQ = 

2 + /?- (1 -jS) 

From /; < c, we can now deduce that b < bo. 
From the inequality (7), by dividing its both sides by /i, we conclude that 

n-(i-ff-«-(i-W-f-.>%-2 + j-f_0. M 
On the other hand, since /? < Z)0, c < b0, and a > a0, we conclude that 

b + (1 - j8) • c- (1 - 0) - 0 • a < 60 + (1 - /?) • 60 - (1 - 0) - /»• a0- 

Substituting /;0 = 1 - a<j into this inequality, we get 

/;+(l -P)-c-{l - P)- ft-a 

< l-ao + {l-p)-{l-a0)-{l-p)-p-ao. 

Combining together terms which contain a0 and terms which do not contain a0, 
and substituting the expression for a0, we conclude that 

b + {\-P)-c-{\ -p)-p-a 
<(l + l-0-l+/O + flo-(-l-l+/»- P) 

-1"2flB-1"2 + 0.(l-/J)"2 + 0.(l-«' (10) 

Comparing (9) and (10), we conclude that 

'""    <»+(i-ff.«-(i-/o-*..<.'-(1-» 

hence 

[-P P-(l~P) 
2 + p-(\-p)     2 + p-(l-p) 

Multiplying both sides by the common denominator and dividing both sides by 
the common factor 1 - ft of both numerators, we conclude that /i > 1, which 
contradicts our assumption that p < 1. 

The contradiction shows that in Case II, we cannot have ta - tc > M. 
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8.3.4. Case III 
In this case, as we have shown in Section 8.2, (A&c) + fl< 1. hence 

t„ = {bkc)ka = p-mm(bkc,a) = /»' • min(A + (1 -p)-c-{\ - ft),a). 

For tc, we had two possible expressions: 

(a) Iffi-a + c^l, then (akb)kc = ff • a. 
(b) If p-a + c> 1, then {akb)kc = p-a + (1 - /?) • c - (1 - /?). 

Let us show that in both cases, the assumption /„ - tr > M leads to a con- 
tradiction. 

8.3.5. Case III, Subcase (a) 
In this case, from /„ - /,. = /„ - [f • a > M, we can conclude that 

[1 • a — fi~ • a > M - from which, as we have shown in Case II, we can deduce 
a > a0 - and that 

P-b + p-(l-p)-c-p-(l-P)- ft2 • a > M. 

Dividing both sides of this inequality by /)', and taking into consideration that 
M = P • (1 — /?) • do, we conclude that 

b + (\-p).c-{\ -p)-p.a>{\ -P)a0. (11) 

Since in Case III, a + b ^ 1, we conclude that b^\ — a, so from a > cio, we can 
deduce that & < 1 - a < 1 — ao = bo. 

In Subcase (a), we have fi • a + c < 1, hence c < 1 — /? • «. So, from a > aa, we 
can deduce that c ^ 1 - /? • a < 1 - /l • an = c0. So, a > «», b < bn, and c < c0. 
Hence, 

/J.6 + /J.(l-j8).c-/?.(l-^)-^.a 

</j.40 + ^.(i_j8).c-^.(l-/;) -/>2 • fl0. 

Substituting into this inequality the expressions b0 = 1 — «0 and <?0 = 1 — /J • ««. 
and combining terms together with a(, and without r/n, we get 

b + (l-p)-c-(l-p)-p-a 

<b0 + (] -P)-c0-0 -P)-P-a0 

= (l-ao) + (l-P)-(\-p-ao)-(l-P)-p- a0 

= (1 + 1 - p- 1 + p) + OQ • (-1 -/?• (I - />') - 0) 

= l+rt„-(-l-2/; + //2). (12) 

From (11) and (12), we can conclude that 

(l-P)-ao<b+(] -p)-c-(l-p)-P-a<l+a0-(-] - 2/>'-l- //2); 
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hence, 

(i-j8)-a0< i+«„-(-i-2/; + /i:). 

Moving terms containing a0 to the left-hand side, we conclude that 

ao-(l -/i+l+2/i-/(:)< 1, 

i.e.. 

flo-(2 + /f-(l-j8))<l. (13) 

We know that 

1 

2 + /i-(l-/i)' 

so (13) leads to 1 < 1 - a contradiction. 

8.3.6. Case III, Subca.se (b) 
In this case, from ta - lc - ta - (ft -a + (1 — /J) • c — (1 - /i)) > M, and from 

the fact that ta is the minimum of two expressions: 

t„ = min(jS • 6 + 0 • (1 - JS) -c - 0 • (1 - P)J • a), 

we can conclude that the following two inequalities hold: 

P- b + p- (1 - P) • c- P• (1 - fi) - (P • a + (1 - /») • c- (1 - /*)) > M; 

(14) 

j8.a-(jS-a + (l-/J).c-(l-^))>M. (15) 

The inequality (15) leads to 

-(l-/i)-c + (l-/J)>/V/. 

Dividing both sides of this inequality by 1 - [i and taking into con- 
sideration that M = ft- (1 — P) • a0, we conclude that -c + 1 > /?• a0, i.e., 
that c < 1 - /)' • <((). Since Co was defined as 1 - /i • a(l, we conclude that 
c < c0. 

Subcase (b) corresponds to the inequality P-a + c>l, so /l • a > 
1 - c; since c < c0, we have 11 • a > 1 - c > 1 - c0 — \) • a{U hence 
a > a0. 

In Case III, a+ 6^1, so 6^1 —a, hence 6< 1 -a < I — a0 = b0. So, 
a > UQ, b < bo, and c < c(). 

The inequality (14) leads to 

P-b - (1 - Pf -c - P- a + (1 - /i)J > M. (16) 
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If we replace, in (16), c by a smaller value 1 - />' • a, we get a valid inequality 

= f}.b-(\-p)2 + P-(\-p)2-a-p-a+ (1 - pf 

= p • b - p2 • (2 - P) • a > M, 

i.e., 

P • b - p2 • (2 - P) • a > M. 

Dividing both sides of the resulting inequality by // and taking into consider- 
ation that M — p • (1 - p) • <70, we conclude that 

b-(2p-p2)-a>(\ -P)-a0. (17) 

On the other hand, since b < bo = \ - an and a > OQ, we conclude that 

b - (2/J - p2) • a < b0 - (2P - p2) • an 

= 1 - fl0 " (2P ~ P2) • an 

= \+(p2-2p-\)-an. (18) 

By definition of an, we have 1 = (1 + /? • (1 — /?)) • an, hence 

1 + (/.'2 - 2p- 1) -Oo = (2 + p- P2) • a0 + (p2 -2p- 1) • an 

= (l-p)-a0, 

so (18) implies that 

b-(2p-p2)-a<(\-p)-aQ. 

This inequality contradicts the previously proven inequality (17). 

8.3.7. Case IV. Subcase A 
Case IV means that 

a + b>\, (19) 

and therefore, that 

a + c> 1 (20) 

and 

b + c>l. (21) 

Subcase A means that 

a + (\ -p)-b + c^2~p. (22) 

In Section 8.2, we have shown that in Case IV, Subcase A. 

tc = p.a + p-(\-p)-b~p-(]-p). (23) 
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and thai ta is the minimum of two expressions: 

ta = min(/}  b + p-{\- />') • c - P • (1 - 0), [i • a). (24) 

Thus, the inequality i„ - (,. > M is equivalent to the following two inequalities: 

P-b + p-(l-P)-c-p-(l-P) 

-(P-a + p-(l-P)-b-P-(l-P))>M; (25) 

p.a-(P-a + p-(l- P)   b-P-{\- P)) > M. (26) 

The inequality (26) leads to 

-P-(l-P)-b + p-(l-p)>M. 

Dividing both sides o\~ this inequality by /i • (1 - /i) and taking into consider- 
ation that M = /?• (1 — P) • ao, wc conclude that —b+l>ao, i.e., that 
b < 1 — at) — bn and /; < b». 

Since in Case IV, a + b > 1, we conclude that a > 1 — b, and since b < bo, 
we have a > 1 — ft > 1 — />() = t/0, i.e.. a > «o- 

Subtracting (19) from (22), we conclude that -[! • b + c^l - \i. Moving the 
term -jl • b to the right-hand side, we get c^ 1 - //+ /i • b. We have already 
shown that b < b0, hence c s: 1 - \\ + ft • b < 1 - \\ + \\ • b0. By definition of bo 
as 1 - do, we get c < 1 — P + /? • /JU = 1 — /J • a<>. The right-hand side of this 
equality is exactly the definition of c(), so we conclude that 

c < c0. (27) 

Now, the inequality (25) leads to 

-P-a + lP -b + p-{l -P)-c>M. 

Dividing both sides of this inequality by fi and taking into consideration that 
M = p- (1 - />')   a0, we get 

-a + p-b+{l-P)-c> (1 -P)-a0. 

Moving all the terms except for the term proportional to c to the right-hand 
side, we get 

(1 -P)-c>a-P-b + (\ -P)-ao. (28) 

We know that a > a0 and that b < bo = 1 — «o- Therefore, from (28), we can 
conclude that 

(l-0)-c>ao-j8-(l-flo) + (l-/O-«o 
= (l + p+l-P)-a0-P = 2a0-p. (29) 

From the definition of at) as 

1 
a°-2r+p.(i-py 
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we conclude that 

2a      R = 2 2-2fi~p2-{\-fi)J\-fi)-(2-fi2) 
°     '      2 + /? -(1-/J)     P'        2 + /?.(l-/?) 2 + fi-(\~fi)   ' 

From the definition of ct), we can now conclude that 2an — fi = (1 - fi) • cn. 
Thus, the inequality (29) is equivalent to (1 — p) • c> (1 — /?) -Co, i.e., to 
c > c0, which contradicts (27). 

8.3.8. Case IV. Subcase B 
Case IV means the inequalities (19)-(21) are all true, and Subcase B means 

that 

a + b + (\-P)-c^2~p (29a) 

and 

a + {\~P)-b + c>2-p. (29b) 

In Section 8.2, we have shown that in Case IV, Subcase B, 

tc = a+(l-p)-b + (l-P)-c-2-(\-P), 

and that /„ is the minimum of two expressions: 

t. = mm{p b + p-(\-p)-c-p-(l-p),p-a). 

Thus, the inequality t„ — tc > M is equivalent to the following two inequali- 
ties: 

p-b + p-(\-p)-c-p-(l-P)-a-(l-P)-b 

~(\-p)-c + 2-(l-p)>M, (30) 

pa -a- (1 -p)  b- (1 -p) -c + 2- (1 - />') > M. (31) 

By combining together terms proportional to a, we can simplify the inequality 
(31) into the following equivalent form: 

-(1 - p) • a - (1 - p) • b - (1 - P) • c + 2 • (1 - fi) > M. 

Dividing both sides of this inequality by 1 — ji and taking into consideration 
that M — fi • (1 - ft) • an, we get —a — b — c + 2 > fi • af). Moving terms a. h, 
and c to the right-hand side and fi • an to the left-hand side, we get 

a + b + c<2-p-ao. (32) 

Subtracting (19) from (31), we conclude that c < \ - fi • an, i.e., by definition of 
cn, that c < co- 

Subtracting (29b) from (32), we get fi • b < fi - // • an = fi • (1 - «,,). By def- 
inition of /)o as 1 — nn, we thus get fi • h < fi • h0, hence b < b0. 

From a + h > 1, we can now conclude that a > 1 — h and since /' < ho, that 
a > 1 — b > 1 — bo, hence (by definition of bo = 1 — an), that a > an. 
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From (30). we conclude that 

-a+(2p-l)-b-(l- l>f • c+ (2 - p) • (1 - (i) > M, 

i.e., that 

a < (20 - 1) • b - (1 - pf   c+(2-P)-(l- P) - M. (33) 

On the other hand, from (29b), it follows that 

a>-(l-P)-b-c + (2-P). (34) 

The lower bound for a coming from the inequality (34) should be smaller than 
the upper bound for a which comes from the inequality (33), i.e., we should 
have 

-(l-p).b-c + (2-p) 

<{2p-l).b-(l-P)2c + (2-P)-(l-p)-M. 

Moving the terms containing h and c to the right-hand side and all the other 
terms to the left-hand side, we conclude that 

(2 - IS) • />' +M<p-b + II • (2 - P) • c. (35) 

Dividing both sides of this inequality by /I and taking into consideration that 
M — P • (1 — P) • ci{), we conclude that 

b + (2-P)-c>2-P + (l -P)-ao. (36) 

On the other hand, we have already proven that b > bo = 1 - a0 and 
c < Co — 1 — P • ao, hence 

b + (2 - p) • c < b0 + (2 - P) • <•„ 

= l-a0 + (2-p)-{l-p-aQ) 

= (l+2-/i) + (-l-2/J + /J2).a0 

= (3-P) + (-\-2ll + p2)-ai). (37) 

The lower bound for b + (2 - fi) • c coming from the inequality (36) should be 
smaller than the upper bound for this quantity which comes from the in- 
equality (37), i.e., we should have 

(2 - P) + (1 - P) • a, < (3 - P) + (-1 - 2p+ pz) • a,. 

Moving all the terms proportional to an to the left-hand side and all other 
terms to the right-hand side, we conclude that 

(2 + P-p2)-a{)< 1. (38) 

However, by the definition of «0, (2 + /( - p1) • a0 = 1, which contradicts (38). 
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8.3.9. Case IV, Subcase C 
Case IV means the inequalities (19)-(21) are all true, and Subcase C means 

that 

a + b + (l-p)-c>2-p. (39) 

In Section 8.2, we have shown that in Case IV, Subcase C, 

l,. = a + (\ -p)-b + (l-p)-c-2-(l-p) 

and 

ta = p-mm(bkc,a) + (\ - p) • ((bkc) + a~ 1) 

= mm(bkc,+(] -p)-a-(l-P),a + (\ - p) • {bkc) - (1 - [])) 

= min((l -j8).a + A + (l-/J)-c-2-(l -/?),a + (l - P) • b 

+ (\-R)2.c-(\~P)2-(\ -/?)). 

Thus, the inequality <a — tc > M leads to the following two inequalities: 

(\-P)-a + b + (l-p)-c-2-(l-p)-a 

- (1 - 0) • b - (1 - 0) • c + 2 • (1 - p) > M, (40) 

a + (1 - p) • b+ (1 - pf • c - (1 - //)2 - (1 - p) - a 

-(l-p)-b-(l-p)-c + 2-(l-p)>M. (41) 

The inequality (41) is equivalent to 

-p.(l-P).c + p-(l-p)>M. 

Dividing both sides of this inequality by /? and taking into consideration that 
M = P • (1 — P) • an, we conclude that — c + 1 > a0, i.e., that c < 1 — fl0- By 
definition of ba, this means that c < V 

Since b ^ c, from c > An, we can also conclude that b > bo. 
From a + b>\ (inequality (19)). we conclude that a>\— b. Since 

b < bo = 1 — <70, we thus conclude that a > 1 — An = 1 - (1 - tfn) = «0, i.e., that 
<7 > an. 

The inequality (40) leads to 

~fl-a + P-b> M. 

Dividing both sides of this inequality by /? • (1 — p), we conclude that 
b — a > (1 — P) • an, i.e., that 

a<b-(\ -P)-a0. 

Since we have shown that b < bo = 1 — floi we t-'an therefore conclude that 

a < 1 -a0 - (1 - p) • aQ, 
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i.e., 

a < 1 - (2 - 0) • «„• (42) 

On the other hand, from (39), we conclude that 

a> -b-{\ ~P)-c + {2-P). 

Since we have proven that b < bt) = 1 - a() and c < b0 = 1 — atl, we can con- 
clude that 

a > -bo - (1 - P) • b0 + (2 - p) = -(2 - II) • b0 + (2 - P) 

= {2-P)-(l-b0) = {2-P)a0, 

i.e., 

a > (2 - p) • a0. (43) 

The lower bound for </ coming from the inequality (43) should be smaller than 
the upper bound for a which comes from the inequality (42), i.e., we should 
have 

(2-j8)-oo< 1 -(2-/J)-flo. 

Moving the negative term to the right-hand side, we get 

(4-2j8)-a0< I- 

Multiplying both sides of this inequality by 2 -4 p — /i2 and taking into con- 
sideration that (by definition of a0) (2 + P - p2) • a0 = 1, we conclude that 
4 -• ip < 2 + p - p2. By moving all the terms to the left-hand side, we get the 
equivalent inequality p2 -3/1 + 2 < 0, i.e., 

(jS-l)-(j8-2)<0. (44) 

Since P < 1, we have /i - 1 < 0 and 0 - 2 < 0, hence Q3 - 1) • (jS - 2) > 0 a 
contradiction. 

8.3.10. Conclusion 
So, in all cases, the assumption that \{ak.b)k.c - ak.{bhc)\ > M leads to a 

contradiction. Thus, the theorem is proven. 

9.  For midpoint operations,  the proof can he simplified  if we use interval 
computations 

9. /, What arc interval compulations 

For a = 0.5, we can simplify this proof by using interval computations (sec, 
e.g., [11,16,17,31]). Namely, our goal is to find the maximum of the function 
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\(akb)kc - ak(bkc)\ when a e [0, 1], h e [0, 1], and c e [0,1]. We know thai 
the minimum of this function is 0: it is attained, e.g., if a = b = c = 0. Thus, 
what we are looking for is the range of the above function of three real vari- 
ables. 

Interval computations is a technique which allows us, given a function 
y — f(x\,... ,x„) of several real variables and a "box" B — \\ x • • • x x„, where 
x, = [xr,•*/"], 1° compute either (he range of the given function on the given 
box: 

y =/(xi,... ,x„) = {f(xu... ,.v„)|.Y| e [xj",xf],... ,.T„ e [.v;,,.v+]} 

or an interval Y which is guaranteed to contain the desired range, i.e., for 
which y C Y (We cannot always compute the exact range because computing 
this exact range is intractable even for quadratic functions f(x\, x„): see, 
e.g., [18].) 

This technique is based on the fact that in the computer, the computation of 
a function /'consists of several elementary steps. For example, a compiler will 
translate the compulation of the midpoint "and" operation 

/(Plift) = 2 max(/'i +P2 - l>°) + 2 m•(PuP2) 

into the following sequence of elementary steps (r\, r-i, etc. denote (he pre- 
liminary computation results): 

• first, we compute /-| := p\ +/>>; 
• then, we compute r2 := n — 1; 
• compute 7*3 := min(/-2,0); 
• compute r4 := (1/2) • o; 
• compute rj := mm(pi,p2): 
• compute ;v, := (1/2) • r-,; 
• finally, compute the result as y := /-j + /•(,. 

In this example, we have two input variables V| = p\ and x2 — Pi- In general, 
for each input variable x,-, we know the interval x,- = f.vr, .v,1 ] of possible values. 
For each elementary step h(a,b), if we know the intervals a = [a",fl+] and 
b = [A~,/)'] of possible values for each of the input, then we can compute the 
interval A(a,b) of possible values of the results: 

• [a .a'} + [h -, b+] = [a- + b~, a+ + b+]; 
• [a' ,a+] - [b-,b+] = [a~ - b+,a+ - b~]; 
• [a~,a+]-{b ,b+] = [c~,c+], where: 

o  c~ = min(a~ • b",a~ • b+,aH • h ,a' • /'' ), 
o  c1 = max(a" • b~,a~ • b+,aA • h",a' • /?''); 

• mm([a~,a+],[b~,b+]) = [min(a~,b~),mm(a+,b+)]; 
• max([a~,a+],[b~,b+]) = [max(a~,b~),m&x(a+,b+)]. 

These formulas are cailcd formulas of interval arithmetic. 
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So, to find an interval that contains the desired range, we follow the original 
algorithm step-by-step, on each step replacing the original elementary opera- 
tion with real numbers by the corresponding operation of interval arithmetic. 

In particular, if we want to know the range of the values of the function 
f{p\iPi) = P\ ^lh ^vHOIT p\ £ I), and p2 £ p2, we do the following: 

• first, we compute r| := p,  t p:; 
• then, we compute r2 := rj - (1, 1]; 
• compute r? := min(r;, [0,0]); 
• compute r4 := [0.5,0.5] • r?; 
• compute r5 := min(p1,p2); 
• compute rf, := [0.5,0.5] • r5; 
• finally, compute the result as Y :— r4 + 17,. 

It is easy to prove (by induction) that at any given moment of time, the result of 
this procedure is guaranteed to contain the result of the interval of possible 
values of the corresponding quantity. 

It is also easy to show that this "naive" interval compulation procedure 
sometimes overestimates. For example, for a function f{x\) = xj • (1 — X\) on 
the interval [0, I], the computational procedure consists of the following two 
steps: 

• /', := 1 -A-,; 

• y:=x\ •/•,, 

so we get the following estimate: 

.  r, := [1,1] - x, = [1,1] - [0, I] - [I - 1, 1 - 0] = [0,1]; 

.  Y:=X,T, = [0,1] • [0,1] = 
[min(0-0,0- 1,1 -0,1 • l),max(0 • 0,0 • 1,1-0,11)] = [0,1], 

while the actual range is y = [0,0.25] C Y = [0,1]. 
To decrease the overestimalion, we can use the following methodology of 

interval computations: we divide each interval x, into several sub-intervals, 
thus dividing the original box into many sub-boxes; then, we estimate the range 
of the function over each of the subintervals, and then take the union of the 
resulting ranges as an estimate for the range over the whole original box. 

If we are interested not only in the actual value of the maximum, but if we also 
want to know where exactly this maximum is attained, then we can use this sub- 
boxes as follows: if wc have two subboxesZJi and #2 with range estimates [ni\, M\\ 
and [ni2,M2}. and M\ < ni2, then we are guaranteed that an arbitrary value 
f{x\,... ,x„) for (.v'i, x„) from the first subbox is smaller than every value 
from the second subbox. Thus, we can safely claim that the (global) maximum of 
the given function cannot be attained in the first subbox - hence, this first subbox 
can be safely removed from the list of possible location of the global maximum. 

We used this idea to simplify our proof. 
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9.2. How we used interval computations to simplify the proof for midpoint 
operation 

In our proof, we considered four different cases I -IV, which depended on the 
relation between 1 and the sums a + b, a -\ c, and b + c. In the above proof, for 
each of these four cases, we showed that the value of the desired function 
cannot exceed the bound described by the theorem (for a = (1 = 0.5, this upper 
bound is M = 1/9). 

To check whether the corresponding four parts of the proof are really neces- 
sary, we divided each original interval [0,1] into 100 subintervals of length 
0.01: [0,0.01], [0.01,0.02], etc. As a result of this subdivision, we get 
100 x 100 x 1000 = 106 sub-boxes. (At first, we started with dividing each in- 
terval [0,1] into 10 sub-intervals, but this did not lead to any simplification of the 
proof.) For each of these subboxes, we applied the naive interval computations 
technique to estimate the range [/n,-,A//] of (he desired function 
|(«&A)&c — aKi{bkc)\ on this subbox. Then, we eliminated all subboxes for 
which M, < 1/9. (Thus, if a subbox has been discarded, this means that for each 
combination (a, b, c) from this subbox, the value of the desired function is < 1 /9.) 

As a result, out of the original million subboxes, we were left with only 80 
possible locations of the global maximum. These subboxes were located in the 
following places: 

• For b, the only possible subintervals turned out to be are [0.54,0.55], 
[0.55,0.56], [0.56,0.57], and [0.57,0.58], i.e., we can conclude that 
be [0.54,0.58]. 

• For a, the possible subintervals are: 
o   either from the interval a G [0.43,0.46], in which case c G [0.75,0.79]; 
o   or from the interval a G [0.75,0.79], in which case c G [0.43,0.46]. 

If we sort these values in the increasing order, then we conclude that for the 
sorted variables, a G [0.43,0.46], b G [0.54,0.58]. and c € [0.75,0.79]. 

Since a G [0.43,0.46] and c G [0.75,0.79], the sum a + c is guaranteed to be- 
long to the interval [0.43,0.46]+ [0.75,0.79] = [1.18,1.25], i.e., is guaranteed to 
be larger than 1. Thus, if for some values a, b, and c, we have a + c < 1, then we 
already know that for these values, the desired function cannot take a value > 1 /9 
(since this triple (a, b, c) belongs to the discarded subboxes, for which we have 
already shown that the value of the function is < 1/9). 

To check that the desired function cannot take the values > 1/9, it is suffi- 
cient only to check 80 remaining subboxes. Since for these remaining subboxes, 
a + c > 1, there is no need to consider Cases I and II for which a + c ^ 1. So, 
we only have to prove the result for Cases III and IV. 

Interval computations not only reduces the number of cases in half, it also 
simplified the proof of at least one of the cases Case IV. Indeed, in the above 
proof, to prove the theorem for Case IV, we separately considered three sub- 
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cases (A, B, and C) which correspond to the possible relation between 2 — /? 
(=1.5 for midpoint operations) and the expressions a + (l— P)b + c 
(= a + 0.5 • b + c) and a + b + (1 - /?) • c (= a + b + 0.5 • c). By using the 
above-described guaranteed intervals, we can eliminate the need to consider 
some of these subcases in our proof. Indeed, within the above interval bounds 
for a, h, and c, the upper bound for a 4- b + (1 - (i) • c = 1 + b + 0.5 • c is equal 
to 0.46 + 0.58 + 0.5 • 0.79 = 1.435 < 1.5. Thus, to check that the value of the 
desired function cannot exceed 1/9, we only need to consider cases when 
a + b + 0.5 • c < 1.5. Thus, we can dismiss Subcase C when this inequality is 
not satislied, and only consider Subcases A and B in our proof. 

Thus, for the midpoint operations, the use of interval computations indeed 
eliminates more than half of the cases and thus, simplifies the proof. (We 
expect the same simplification to occur for other operations as well, when 
a ^ 0.5.) 

A further simplification emerges from observing that for each subcase, the 
problem of maximizing the difference ta - tc is a problem of optimizing a linear 
function under constraints which arc linear inequalities; in other words, this 
problem is a linear programming problem. It is known that for such problems, 
the optimum is always attained at one of the vertices. Each vertex can be 
obtained as follows: if we have n variables, then we need to select /; inequalities, 
make them equalities, solve the corresponding system of n linear equations 
with n unknowns, and cheek that the remaining inequalities are still satisfied. 
This checking can be done automatically. Then, all we have to do is compute 
the values of the optimized function at different vertices and make sure that all 
these values do not exceed our bound M. 

10. Conclusions 

In this paper, we considered the situations when we know the subjective 
probabilities (degrees of belief) p\ and p2 of two statements S\ and S2, and we 
have no information about the relationship between these statements. In this 
case, the probability of SikS2 can take any value from the interval 
[max(p\ +p2 - l,Q),mm(pi,p2)]. If we must select a single number from this 
interval, the natural idea is to take its midpoint 

Pi &P2 = x ' (max(Pi +P2 ~ 1.°) + '"^(pi,/^)) 

or, more generally, to take a linear combination 

Pt kp2 = cc- max(pi + p2 -1,0) + (1 -a) • m'm(j>i,p2). 

These choices are not only natural, they also have deeper justifications based 
on second-order probabilities and symmetry ideas. 
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The problem is that, contrary to intuitive expectations, the corresponding 
"and" operations are not associative. However, since the largest possible non- 
associativity degree \{ahb)foc - a&(ft&c)| is equal to 1/9, this non-associ- 
ativity is negligible if the realistic "granular" degree of belief have granules of 
width  > 1/9. 

This may explain why humans are most comfortable with <9 items to 
choose from (the famous "7 plus or minus 2" law). 
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